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xix

This edition bene�ts from the expertise of a new coauthor, Dr. John A. Luczaj, from 
the University of Wisconsin–Green Bay. John’s added knowledge and experience in 
many areas of geology have brought a fresh view to many aspects of the textbook.

          PREFACE

We coauthors share not only an intellectual passion for the history of our 
planet and its life, but also an aesthetic and romantic excitement about 
our subject, with its immense scale in time and space. Our goal is to 

instill similar enthusiasm in students.
This edition, like those that preceded it, is founded on the basic principle that the 

physical and biological history of Earth are so thoroughly intertwined that they must 
be treated in an integrated fashion. Once again, Chapters 1–10 introduce the facts, 
processes, and concepts that are required for comprehension of Chapters 11–20, 
which present the narrative of changes in the Earth system since its inception. Each 
of these later chapters, focusing on a particular geological interval, begins with broad 
topics, such as the nature of the life that populated the planet and patterns of global 
paleogeography and climate change. Most of these chapters then narrow their focus 
to examine important regional events.

New Science
• New examples of punctuational evolutionary origins of distinctive taxa, such as 
freshwater jelly�sh on the island of Palau and the marine sand dollar Dendraster
along the coast of California (pp. 170–172; Figure 7-14).

The geologically sudden origin of the asymmetric 
sand dollar Dendraster in a small region 
in association with the new life habit of standing 
upright on the sea�oor and feeding on 
suspended organic matter. (A, Rich Reid/
National Geographic/Getty Images; B, Derek 
Tarr, wildoceanphoto.com; C, After S. C. Beadle, 
Paleobiology 17:325–339, 1991.)
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• Current views of all the major mass extinctions. New 
information is presented throughout much of the book (Chapters 
10 and beyond) illustrating how isotope excursions that coincide 
with mass extinctions reflect global climate change (Chapter 10; 
Figure 10-19).

Parallel negative excursions for carbon and oxygen stable isotopes 
across the Triassic-Jurassic boundary, which indicate that intense 
climatic warming occurred.  (After C. Korte, S. P. Hesselbo, H. C. Jenkyns, 
R. E. M. Rickaby, and C. Spotl, J. Geol. Soc. Lond. 166:431–445, 2009.)

• Updated Proterozoic history, including a discussion 
of the colossal Sudbury asteroid impact, which 
occurred in southern Canada 1.85 billion years ago 
and melted crustal rocks to produce massive metallic 
ore deposits (Chapter 12; Figure 12-19).

Copper ore, a shatter cone, and a 
megabreccia—all produced by the 

Sudbury impact.  (A, Courtesy of William
F. Cannon, U.S. Geological Survey;

B, Courtesy of James St. John, Ohio
State University at Newark; 

C, © Don Johnston/age fotostock/Alamy; 
D, Courtesy of Brian Allison.)

• A new evaluation of the snowball 
Earth hypothesis (Chapter 12).

• A discussion of four supercontinents 
that formed during the Proterozoic, 
with new illustrations (Figures 12-22, 
12-24, and 12-25).

The latest reconstructions of the 
supercontinents Nuna, Rodinia, and 
Pannotia—and also Gondwanaland near its 
time of origin. (A, Courtesy of William F. Cannon, 
U.S. Geological Survey; B, Courtesy of James St. 
John, Ohio State University at Newark; C, © Don 
Johnston/age fotostock/Alamy; D, Courtesy of Brian 
Allison.) (After Z.-X. Li and D. A. D. Evans, Geology 
39:39–42, 2011.) (After S. A. Pisarevsky, J. B. Murphy, 
P. A. Cawood, and A. S. Collins, Geol. Soc. Lond. Spec. 
Publ. 294:9–31, 2008.)
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• New interpretations of the Burgess 
Shale fauna (Chapter 13) and other 
early Paleozoic life forms, including 
trilobites (Figure 13-3).

A B

C D

Very small Cambrian trilobites that are inter-
preted as having lived a planktonic life.  (A, © Géry 
Parent; C and D, from B. Schoenemann, E. N. K.
Clarkson, P. Ahlberg, and M. E. D. Alvarez, Palaeontology 
53:695–701, 2010.)

A B
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• New evidence, in the form of trackways, that 
vertebrates had evolved legs and feet with toes and 
were walking on land long before they left a recognized 
skeletal fossil record (Figure 14-21).

Tracks in Poland showing that amphibians walked 
the earth in early Middle Devonian time, long before 

the existence of the oldest amphibians known from 
fossilized skeletons. (A, Grzegorz Niedźwiedzki.)

• New evidence that widespread glaciation occurred 
close to the equator in Late Carboniferous time 
(Figures 15-20 and 15-21). 

Loess deposits and cracks that formed in frozen ground, 
both indicating that widespread Late Carboniferous 
glaciation occurred at low latitudes in what is now the 
American West.  (After G. S. Soreghan, M. J. Soreghan, and M. A. 
Hamilton, Palaeogeogr. Palaeoclimatol. Palaeoecol. 268:234–259, 
2008.) (Photos: Dustin E. Sweet, Texas Tech University.)
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• New evidence on the cause of the terminal Permian mass 
extinction.

• New evidence supporting an interpretation of the Grand Canyon’s 
history as extending back to at least the Late Cretaceous (Chapter 17).

• An up-to-date discussion of dinosaur biology in “The Rise of the 
Dinosaurs: Why Were They So Successful?” (Earth System Shift 16-1, 
Figure 8).

Color patterns of a gliding feathered dinosaur, 
reconstructed through the use of revolutionary new 
analytical techniques. (Julius T. Csotonyi/Science Source.)

3µm

• Updated interpretations of Cenozoic climate change 
(Chapters 19 and 20). 

• The newest evidence on human evolution (Chapter 19).

A cluster of needle-shaped colonial diatoms from Arctic 
Ocean sediments; these show, surprisingly, that sea ice 

was present in the Arctic as early as 46 million years ago. 
(Courtesy of Catherine E. Stickley, University of TromsØ)

Additional New Features
• Literally over a thousand updates and changes to �gures, text, and captions.

• A completely revised and updated photo program.
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• A revised geologic time scale, including the formal 
addition of the Quaternary Period.

• Expanded coverage of cross-cutting and relative 
age relationships, such as those evident in faults and 
xenoliths.

• New use of important scienti�c terms, such as 
“Lagerstätte” and “microbiolite,” that have become 
widely used in the Earth history literature.

• Revised phylogeny and biodiversity sections in 
Chapter 3, including the modern picture of the 
general phylogeny and classification of life on Earth 
with corresponding new line art (Figure 3-6).

A highly revised tree of life with many 
new names for major taxonomic groups.
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• Other new line art �gures feature major 
groups of the Anthropoidea (monkeys, apes 
and humans) (Figure 3-7), the phylogeny of 
horses (Figure 3-11), and the phylogeny of 
plants (Figure 3-19).
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The general phylogeny of horses, with a detailed 
species-level phylogeny for the genus Nannippus
produced by cladistic analysis. (After B. J. MacFadden, 
Science 307:1728–1730, 2005, and K. C. Maguire and A. L. 
Stigall, Palaeogeogr. Palaeoclimatol. Palaeoecol. 267:175–184, 
2008.)

• Other new and updated art, including Mississippi River delta lobes (Figures 
5-17 and 5-18), stromatolite growth (Figure 5-30), maps of submarine fan 
locations (Figure 5-33), magnetic stratigraphy (Figure 6-4), zircon 
dating interpretations (Figure 6-9), several isotope curves (Figure 6-12; 
Figure 10-10; Figure 10-19; ESS 12-2, Figure 4; Figure 16-2; Figure 19-14), 
domes and basins (including a new geologic map of the Michigan basin 
[Figure 9-22]), cenotes in the Yucatán Peninsula (ESS 17-1, Figure 5), and more.

A B

Cenotes, which are �ooded sink holes in the 
Yucatán Peninsula, some of which dramati-
cally outline the crater made by the asteroid 
impact that eliminated the dinosaurs. (A, Martin 
Engelmann/Getty Images; B, after P. K. H. Maguire et 
al., Geological Society of London Special Publication 
140:177–193, 1998.)

Interactive Learning: Book Companion Site for Students
http://www.whfreeman.com/osc/esh4e
This robust resource helps students focus their study, review, and exam preparation 
time. What’s more, instructors have access through the site to presentation resources, 
images, and an online gradebook that allows them to track student progress.

The Book Companion Site includes the following features:

• Chapter-by-chapter self-guided study plan with diagnostic test. Once 
students log in to the Book Companion Site, they may take a diagnostic self-test to 
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assess their current knowledge of a particular chapter. Students then receive a 
targeted study plan with links to specifc media content to help them review the 
questions they got wrong. 

•	 Multiple review tools, organized by chapter. In addition to using the study 
plan, students can search by topic or browse by chapter to fnd myriad interactive 
exercises, fashcards, and animations.

•	 Interactive study tools. Through the Book Companion Site, students can add 
resources to their Favorites or add Notes to specifc resources. 

•	 Interactive time line. This engaging time line covers fve richly illustrated 
topics:

	 •	 Plant Life through Time

	 •	 Marine Life through Time

	 •	 Tectonics through Time

	 •	 Land Animals through Time

	 •	 Oceans, Climate, and Mass Extinctions through Time

The time line traces important aspects of Earth and its biota through its entire 
history and demonstrates how these topics are interrelated, underscoring 
important connections. Studying an individual topic “vertically” (through time) 
as well as “horizontally” (in relation to contemporaneous events) helps students 
acquire a comprehensive view of the major features of Earth’s history.

Expeditions in Geology Videos
Accompany Dr. Jerry Magloughlin of Colorado State University as he fies around 
the world flming extraordinary examples of Earth in action.

Volume 1

  1.	 Wasatch Fault: Active Fault in the Rockies 

  2.	 Dome in the Desert: Upheaval Dome

  3.	 Cinder Cones of Northern Arizona: Sunset and SP Craters

  4.	 Barringer Meteorite Crater: Impact Crater of Arizona

  5.	 White Island, New Zealand: Stratovolcano in the Pacifc

  6.	 White Island, New Zealand: Hydrothermal Features

  7.	 Jade: Turning Metamorphic Rocks into Art

  8.	 Lava Flows and Features, Arizona

  9.	 Original Horizontality, Superposition, and Sedimentary Structures

10.	 Sedimentary Bedding

11.	 Limestone

Volume 2

  1.	 The Alpine Fault: A Plate Boundary You Can Touch

  2.	 Olivine: Igneous Rocks, Mantle Xenoliths, and Green Sand Beaches
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  3.	 Gneiss: The Lewisian Complex of Scotland

  4.	 Mount Vesuvius and the Plinian Eruption of 79 ad

  5.	 The Naples Metropolis: At Risk from Mount Vesuvius?

  6.	 Mount Etna: Europe’s Largest Active Volcano

  7.	 Crater Lake: Caldera in the Cascades

  8.	 Spheroidal Weathering

  9.	 Natural Arches and Bridges

10.	 Just Passing Through: A Rockfall in Glenwood Springs, Colorado

11.	 Geology and Warfare: The Battle of Monte Cassino

12.	 Landforms Produced by Continental Glaciation

13.	 Glacial Lakes and Wetlands

14.	 Glacial Deposits: Till, Outwash, Erratics, and Loess

Computerized Test Bank
ISBN 1-4641-6230-1
Hundreds of multiple-choice questions allow instructors to create tests easily. The 
easy-to-use CD-ROM is compatible with both Windows and Mac, and it permits 
instructors to add, edit, resequence, and print questions to suit their needs.

Online Courses
As a service for adopters, W. H. Freeman and Company will provide content fles 
in Blackboard and other course management formats, including the Instructor 
Resources and Student Resources for this text. The fles can be used as is, or they 
can be customized to ft specifc needs. Prebuilt student quizzes, activities, test 
bank questions, and an array of other materials are included.
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The authors express their gratitude to the outstanding team of people at 
W. H. Freeman who helped them complete this new edition. Bill Minick, 
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1

Earth as a System

1

A lava channel �owing from the 
Hawaiian volcano Kilauea. This
volcano has erupted 33 times 
since 1843. (G. Brad Lewis/Aurora 
Creative/Getty Images.)
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2	 CHAPTER 1   Earth as a System

Few people recognize, as they travel down a highway or 
hike along a mountain trail, that the rocks they see around 
them have rich and varied histories. Unless they are 

geologists, they probably have not been trained to identify a 
particular clif as rock formed on a tidal fat that once fringed 
a primordial sea, to read in a hillside’s ancient rocks the history 
of a primitive forest buried by a fery volcanic eruption, or 
to decipher clues in lowland rocks telling of a lofty mountain 
chain that once stood where the land is now fat. Geologists 
can do these things because they have at their service a wide 
variety of information gathered over the two centuries during 
which the modern science of geology has existed. The goal of 
this book is to introduce enough of these geologic facts and 
principles to give you an understanding of the general history 
of our planet and its life. The chapters that follow describe 
how the physical world assumed its present form and where 
the inhabitants of the modern world came from. They also  
reveal the procedures through which geologists have assembled 
this information. Students of Earth’s history inevitably discover 
that the perspective this knowledge provides changes their 
perception of themselves and of the land and life around them.

Knowledge of Earth’s history can also have great practical 
value. Geologists have learned to locate subterranean res-
ervoirs of petroleum and water, for example, by ascertaining 
where the porous rocks of these reservoirs tend to form in 
relation to other bodies of rock. Geologists have also helped 
to discover deposits of coal, metallic ores, and other natural 
resources buried within Earth. They have also shown that 
environmental conditions on our planet have been very  
diferent in past times, and that those conditions have  
sometimes changed very rapidly, not only over geologic  
time but even on the time scale of human history.

Exploring the Earth System
The rocks of Earth’s outer regions constitute a vast ar-
chive that we can read and interpret in order to unravel 
the planet’s long history. By studying Earth’s history, we 
learn how our planet functions as a complex system. An 
understanding of that system will help us to address prob-
lems caused by changes that are now taking place in the 
world, or that will soon be occurring.

Earth is a special planet
Given the presence of trillions of planets circling sunlike 
stars in the universe, many scientists believe that life must 
exist in many places outside our solar system. Nonetheless, 
only a small percentage of all planets could support any 
form of life. Earth has special features that make it a livable 
planet. For example, Earth’s distance from the sun and the 
size of the sun itself produce temperatures at Earth’s sur-
face that allow complex carbon compounds—the building 
blocks of life—to survive and enter into chemical reac-
tions. In addition, Earth has a large enough mass to retain 
life-supporting fuids through gravitational attraction; thus 

it can be mantled by an ocean and an atmosphere, and it 
can hold water in lakes, rivers, and soil. At the same time, 
Earth is small enough that its gravity does not attract many 
giant asteroids from space, whose impacts can devastate 
life. In contrast, numerous massive meteorites have pelted 
Jupiter, whose mass is 318 times that of Earth.

The components of the Earth system  
are interrelated
The Earth system has both physicochemical and biologi-
cal components. We can reconstruct many aspects of the 
planet’s physical history, including the growth and de-
struction of mountains, the breakup and collision of con-
tinents, the fooding and reemergence of land areas, and 
the warming and cooling of climates. We can also trace 
the evolution of life from an early world inhabited largely 
by bacteria and similar forms of life through the origins 
of plants and animals in ancient seas to the invasion of 
the land, the rise and fall of dinosaurs, and ultimately the 
ascendancy of humans. We cannot understand either the 
physical or the biological history of Earth in isolation, how-
ever, because the two have been tightly intertwined: the 
physical environment has infuenced life, and life, in turn, 
has infuenced the physical environment. For example, as 
we will see in Chapter 4, climatic patterns control distri-
butions of plants on land. At the same time, plant life af-
fects climates. Forests warm regional climates by trapping 
heat, for instance, and plants also affect global climates by 
altering the chemistry of the atmosphere. The geologic re-
cord reveals that the histories of land plants and climates 
have shifted in concert for hundreds of millions of years. 
Many other factors, including continental movements and 
the rising and falling of seas, have infuenced climates as 
well. The present state of Earth is a momentary condition 
that is the product of a long and complex history.

Armed with knowledge of Earth system history, we 
can more effectively address problems caused by changes 
that are now taking place in the world. Consider the shift-
ing of coastlines as sea level rises or falls. The geologic 
record of the past few thousand years documents a global 
rise in sea level as huge glaciers have melted and released 
water into the ocean. The geologic record near the edge 
of the sea reveals how coastal marshes have shifted their 
positions as sea level has changed. These marshes are 
very important to humankind; they cleanse marginal ma-
rine waters and sustain forms of animal life that are valu-
able to us. Study of the geologic history of coastal marshes 
will help us to predict their fate as human activities warm 
Earth’s climate and sea level continues to rise in the de-
cades and centuries to come.

Aspects of the Earth system are fragile
The geologic record of the history of life also provides 
a unique perspective on the numerous extinctions of 
animals and plants that are now resulting from human 
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activities. Humans are causing extinctions by destroying 
forests and other habitats, and our collective behavior 
also affects life profoundly in less direct ways. Human 
activities are causing average temperatures at Earth’s sur-
face to rise throughout the world. The geologic record 
of ancient life reveals how climatic change has affected 
life in the past—how some species have survived by mi-
grating to favorable environments, for example, and how 
others that failed to migrate successfully have died out. 
To the surprise of many biologists, geologic evidence has 
revealed that many of the natural assemblages of species 
that populate the world today are not ancient associations 
of interdependent species. Instead, they are associations 
that have developed very recently (on a geologic scale of 
time) as climatic changes have caused many species to 
shift about independently of one another.

As we come to understand the speed and power of 
natural environmental change and the temporary nature 
of assemblages of species, we can begin to appreciate the 
fragility of the world we live in. More generally, having 
studied the past, we can make more intelligent choices as 
we contemplate the future of our changing planet.

Before we launch into our detailed examination of 
the history of Earth and its life, however, an introduc-
tion to some of the basic facts and unifying concepts of 
geology is in order. The frst ten chapters lay this ground-
work, and the chapters that follow trace out Earth system  
history.

The Principle of Actualism
Underpinning the science of geology today is the notion 
that the fundamental physical and chemical principles 
that humans observe operating today have operated 
throughout Earth’s history. In fact, this concept, which 

FIGURE 1–1  Ripples in sediments and sedimentary rocks. 
A. Wave ripples exposed along a modern beach at low tide. 
B. Similar wave ripples preserved in 200 million year old 

A B

geologists term actualism, is a basic tenet of science, and 
it applies on all time scales. Thus a physicist who performs 
a laboratory experiment on a given day assumes that an 
identical experiment the next day—or ten or a hundred 
years later—will yield the same result. Geologists hold 
this principle in particularly great esteem, however, be-
cause, as we will see, it was the widespread rejection of 
opposing views during the frst half of the nineteenth cen-
tury that signaled the beginning of the modern science of 
geology.

Geologists nonetheless recognize that Earth’s pro-
cesses have operated at different rates at different times. 
For example, our planet is rotating more slowly now than 
it did early in its history, and continents, on average, have 
grown larger over the course of geologic time.

Geologists conduct research based on actualism
How is actualism employed in geology? When we see 
ripples on the surface of an ancient rock composed of 
hardened sand (sandstone), for example, we assume 
that they formed in the same way that similar ripples 
develop today—under the infuence of certain kinds of 
water movement or wind (Figure 1-1). Similarly, when 
we encounter ancient rocks that closely resemble those 
forming today from volcanic eruptions of molten rock 
in Hawaii, we assume that the ancient rocks are also of 
volcanic origin. Geologists cannot observe rocks twisting 
into contorted confgurations like those seen in moun-
tains, but they can witness the breaking, bending, and 
uplift of rocks during earthquakes, and they can calcu-
late that the same immense forces that produce these 
effects can contort rocks deep within Earth and elevate 
them into mountains. The rates of horizontal and verti-
cal ground motion can be observed using real-time GPS 
instruments that track the positions of specially placed 
markers called bench marks.

sandstone. (A, PearlBucknall/Alamy; B, The Natural History Museum/
The Image Works.)
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Although it is universally agreed that natural laws 
have not varied in the course of geologic time, not all 
kinds of events that occurred in the geologic past have 
been duplicated within the time span of human history. 
Most researchers believe, for example, that the impacts 
of very large asteroids (rocky or metallic objects small-
er than a planet) explain certain past events, such as 
the extinction of the dinosaurs 66 million years ago. In 
Chapter 17 we will review evidence that the dinosaurs’ 
reign on Earth ended when a massive asteroid—one 
perhaps 10 kilometers (6 miles) in diameter—plunged 
through the atmosphere and ocean and penetrated the 
seafoor along the coast of Mexico. It is easy to imag-
ine that the consequences of such a huge impact would 
have wiped out many species around the world. Even 
so, because humans have never observed such an event, 
we must rely on theoretical considerations to surmise 
what actually happened. But we need not abandon basic 
physical or chemical principles to do so.

Geologists have also learned that certain types of 
rocks exist but cannot be observed in the process of form-
ing today. In such cases, geologists usually make one of 
the following three assumptions:

1.   The rocks in question formed under conditions that 
do not exist at the present time.

2.  The conditions responsible for the formation of the 
rocks still exist, but at such great depths beneath Earth’s 
surface that we cannot observe them.

3.  The conditions responsible for the formation of the 
rocks still exist, but produce the rocks only over a long 
interval of geologic time.

Many iron ore deposits more than 1.8 billion years 
old, for example, are of types that cannot be found in the 
process of forming today. It is believed that when these 
deposits formed, chemical conditions on Earth differed 
from those of the present world and, furthermore, that 
the rocks underwent slow alteration after they were 
formed. The existence of these iron ore deposits does not 
negate the principle of actualism inasmuch as there is no 
evidence that natural laws were broken.

In an attempt to address some of these problems, 
geologists have learned to form certain kinds of rocks in 
the laboratory by simulating the conditions that prevail at 
great depths within Earth. They expose simple chemical 
components to temperatures and pressures many times 
greater than those at Earth’s surface to replicate the tex-
tures and mineral content observed in natural rocks.

Actualism replaced catastrophism  
in the nineteenth century
Until the early nineteenth century, many natural scien-
tists subscribed to the concept of catastrophism, which 
asserted that global foods caused by supernatural forces 

formed most of the rocks visible at Earth’s surface. Late 
in the eighteenth century, Abraham Gottlob Werner, an 
infuential German professor of mineralogy, promoted 
catastrophism with great success, claiming that most 
rocks had been formed by the precipitation of minerals 
from a vast sea that periodically fooded and retreated 
from Earth’s surface. These ideas were largely specula-
tive, and because they relied on unspecifed supernatural 
forces, we now recognize that they were fundamentally 
unscientifc.

Near the end of the eighteenth century, however, not 
long after Werner published his ideas, James Hutton, a 
Scottish gentleman farmer, established the foundations of 
actualism in his writings on the origins of rocks in Scot-
land. Hutton came to the conclusion that those rocks had 
formed as a result of the same processes that were cur-
rently operating at or near the surface of Earth—processes 
such as volcanic activity and the accumulation of grains of 
sand and clay under the infuence of gravity.

Central to Hutton’s view of Earth’s history was vast 
geologic time. For the processes that were constantly 
shaping and reshaping the planet, he envisioned “no 
vestige of a beginning, no prospect of an end.” Everyday 
processes, he proposed, had created and destroyed large 
bodies of rock, elevated and leveled mountains, and left 
remnants of their workings in an immense geologic re-
cord. Early in the nineteenth century, many geologists 
recognized that certain kinds of rocks formed from liquid 
rock that spewed from volcanoes, whereas others formed 
from sand or mud that settled on the bottoms of streams, 
lakes, or shallow seas. Nonetheless, some diehard cata-
strophists still attributed all the layered rocks on Earth to 
a series of catastrophes, the last of which they believed to 
have been survived by Noah and his ark.

After extensive debate, Hutton’s ideas came to domi-
nate the science of geology after Charles Lyell, an Eng-
lishman, popularized them in the 1830s in a three-volume 
book titled Principles of Geology. Lyell was a more effec-
tive writer than Hutton, and the world was more receptive 
to the new ideas when Lyell promoted them than in Hut-
ton’s day. Like Hutton, Lyell understood that volcanoes, 
foods, and earthquakes transform Earth. He argued that 
these events transform Earth in piecemeal fashion, and 
that they operate on local or regional scales, as do more 
subtle agents of change, such as the wearing away of old 
rocks and the accumulation of sand and mud to form new 
ones. In the eyes of Hutton and Lyell, Earth resembled 
an enormous machine that was always churning but re-
tained its basic features.

Although from a modern perspective Lyell was basi-
cally correct in his arguments, he carried them too far in 
three respects:

1.  Lyell argued that no events of a kind never seen 
by humans—even events that violated no laws of 
nature—had ever played an important geologic role. As 
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illustrated by our current understanding of the asteroid 
impact that resulted in the dinosaurs’ disappearance, we 
now recognize that Lyell’s extreme view was incorrect. 
Even some gradual processes, such as the deposition of 
iron formations in ancient seas described earlier, are no 
longer operating on Earth.

2.  Lyell argued that all geologic changes were 
gradual. In addition to the asteroid impact that 
killed off the dinosaurs, we now recognize numerous 
agents of geologic change that have operated with 
great suddenness. Some can reasonably be termed 
catastrophic, though not in the Wernerian sense of 
entailing supernatural forces and forming large bodies of 
rock throughout the world.

3.  Lyell argued that the kinds of rocks that form our 
planet—and even the kinds of living things that occupy 
Earth’s surface—had never basically changed. As he 
saw it, particular bodies of rock and particular species 
of plants and animals had come and gone, but no 
fundamentally new kinds of rocks or organisms had 
appeared. For example, Lyell believed that mammals 
had been present from Earth’s beginning, whereas we 
now know that mammals have existed for only about 
5 percent of our planet’s history, and that for most of 
that time few were larger than a house cat. Similarly, 
Lyell believed that the processes that shape Earth 
had operated at the same general rates throughout 
geologic time, whereas we now know that many of these 
processes have sped up or slowed down greatly over the 
course of geologic time.

Lyell’s extreme philosophy, often summarized by the 
phrase “the present is the key to the past,” is commonly 
labeled uniformitarianism, although some geologists 
consider this word to be a synonym of actualism. Def-
nitions aside, Lyell deserves his prominent place in the 
history of geology, even though he went too far in deny-
ing that Earth and its life have changed appreciably. You 
might say that Charles Lyell, along with James Hutton, 
gave us the concept of geologic time.

Over the course of decades, Lyell’s rigid uniformi-
tarian view gave way to the more expansive concept of 
actualism. Although early in the twentieth century some 
geologists still denied that catastrophic events have 
played a major role in Earth’s history, that view has now 
all but disappeared.

The Nature and Origin of Rocks
Rocks consist of interlocking or bonded grains of mat-
ter, which are typically composed of single minerals. A 
mineral is a naturally occurring inorganic solid element 
or compound with a particular chemical composition or 

range of compositions and a characteristic internal struc-
ture. Quartz, which forms most grains of sand, is probably 
the most familiar and widely recognized mineral; the ma-
terials we call limestone, clay, and asbestos consist of other 
minerals. Most rocks in Earth’s crust are formed of two 
or more minerals, but some common rocks, such as lime-
stone, dolostone, quartz sandstone, quartzite, and marble, 
are each composed of just one mineral. Others, such as 
coal, pumice, and obsidian (a volcanic rock), do not con-
tain true minerals but are considered rocks because of 
their mode of origin and relationships to other rocks.

The interconnected set of rocks in Earth’s crust 
that occurs beneath loose soil or sediment is known as 
bedrock. Bedrock surfaces that stand exposed and are 
readily accessible for study are generally referred to as 
outcrops or exposures. Scientists also have access to 
rocks that are not visible in outcrops. Well drilling and 
mining, for example, allow geologists to sample rocks 
that lie buried beneath Earth’s surface.

Igneous, sedimentary, and metamorphic rocks  
can form from one another
On the basis of modes of origin, many of which can be 
seen operating today, early uniformitarian geologists, led 
by Hutton and Lyell, came to recognize three basic types 
of rocks: igneous, sedimentary, and metamorphic.

Igneous rocks are formed by the cooling of molten 
material to the point at which it hardens, or crystallizes 
(much as ice forms when water freezes). They are com-
posed of bonded grains, each consisting of a particular 
mineral (Figure 1-2). The igneous rock most familiar to 
nongeologists is granite. The molten material, or magma, 
that becomes igneous rock comes from great depths with-
in Earth, where temperatures are very high. This material 
may reach Earth’s surface through cracks and fssures in 
the crust and then cool to form extrusive, or volcanic, 

FIGURE 1–2  Interlocking grains in granite. The pink and white 
grains are two kinds of feldspar, the gray grains are quartz, and 
the black grains are mafc minerals. The smaller quartz grains are 
the size of grains of sand. (Sabena Jane Blackbird/Alamy.)
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igneous rock, or it may cool and harden within Earth to 
form intrusive igneous rock (Figure 1-3).

Even intrusive rocks that form deep within Earth can 
eventually be exposed at the surface if they are uplifted 
by Earth movements and overlying rocks are stripped 
away. Weathering is a collective term for the chemical 
and physical processes that break down rocks of any kind 
at Earth’s surface. There are two types of weathering. 
Physical weathering entails the mechanical fragmentation 
of rock without chemical alteration. In chemical weath-
ering, minerals in rock are altered to other minerals or 
dissolved away (Figure 1-4). Solid products are removed 
by erosion, the process that loosens pieces of rock and 
moves them downhill. After erosion sets these pieces of 

rock in motion, moving water, ice, or wind may transport 
them to a site where they accumulate as sediment. Water 
also carries some products of weathering away in solution.

Sediment is material deposited on Earth’s surface 
by water, ice, or air, or by gravitational transport down a 
slope. Grains of sediment accumulate in a variety of set-
tings, ranging from the surfaces of desert dunes to river 
channels, lake bottoms, sandy beaches, and the foor of the 
deep sea. Grains that have accumulated as loose sediment 
can become bonded together to form solid sedimentary 
rock by either of two processes: the grains may become 
mutually attached by compression of the sediment after 
burial, or they may be glued together by precipitation of 
mineral cement from watery solutions that fow through 
the sediment. These two processes that turn loose sedi-
ment into solid rock are collectively termed lithifcation.

There are three principal kinds of rock-forming 
sediments:

1.  Detrital (or clastic) sediments: Most sedimentary 
rocks are formed of the kind of sediment described 
above: debris generated by weathering of preexisting 
rocks. The most common grains produced in this 
way are particles of clay and sand. Tiny clay particles 
are formed by the chemical breakdown of certain 
minerals: they are chemical products of weathering. 
Clay is a faky material that compacts to form the 
soft rock known as shale. Feldspars weather to clay. 
Because feldspars are the most abundant group of 
minerals in granite (see Figure 1-2) and are present 
in many other rocks on continents, clay is a major 
product of weathering at Earth’s surface. Quartz grains 
also constitute a signifcant proportion of granite and 
other rocks. Weathering releases quartz grains from 
these rocks, generally without chemical alteration, 

FIGURE 1–3  Intrusive igneous rock and faults illustrate 
relative age relationships. A. The pink material is granite 
that intruded into, and incorporated pieces of, the older rock 
surrounding it. These included pieces of the surrounding rock 
are known as xenoliths. The widest granite-flled crack is about 

A B

FIGURE 1–4 Pillar produced by weathering of granite in Joshua 
Tree National Park, California. (Spring Images/Alamy.)

2–3 centimeters (an inch) wide. B. An outcrop of sedimentary 
rocks that have been cut by faulting. The feld of view is about 
one meter (3 feet) wide. (A, John Luczaj, University of Wisconsin–
Green Bay; B, Peter L. Kresan.)
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which can accumulate to form sand and, eventually, 
sandstone. Such sand grains are globular, and they do 
not stick together well when compacted. Loose sand 
therefore becomes solid sandstone only when cement 
precipitates between adjacent grains, locking them 
together.

2.  Biogenic sediments: Other sedimentary 
rocks consist of fragments of skeletons of once-
living organisms. Many limestones are formed of 
such material, including bits of broken seashells. 
Cementation turns accumulations of this limey debris 
into solid rock.

3.  Chemical (inorganic) sediments: Still other grains 
that form sedimentary rocks are precipitated chemically 
from water. The salt deposits that we mine for a variety 
of purposes form in this way when bodies of water 
evaporate in dry climates.

Sediments usually accumulate in discrete episodes, 
each of which forms a tabular layer known as a stratum 
(plural, strata) or bed. A breaking wave can create a 
stratum, for example, and so can the spreading waters 
of a fooding river. Even after lithifcation, a stratum 
tends to remain distinct from the one above it and the 
one below it because the grains of adjacent strata usu-
ally differ in size or composition. Because of such dif-
ferences, the strata usually adhere to each other only 
weakly, and sedimentary rocks often break along these 
surfaces. As a result, many sedimentary rocks exposed 
at Earth’s surface can be seen to have a steplike con-
fguration when viewed from the side (Figure 1-5). 
Stratifcation and bedding are the synonymous words 
used to describe the arrangement of sedimentary rocks 
in discrete layers.

Metamorphic rocks are formed by the alteration, or 
metamorphism, of rocks within Earth under conditions 
of high temperature and pressure. By defnition, meta-
morphism alters rocks without turning them to liquid. If 
the temperature becomes high enough to melt rock, and 
the molten rock later cools to form new solid rock, this new 
rock, by defnition, is igneous rather than metamorphic. 
Some types of metamorphism result from the passage 
of watery fuids through rocks. Metamorphism produces 
minerals and textures that differ from those of the original 
rock and that are characteristically arrayed in parallel wavy 
layers (Figure 1-6). The two groups of rocks that form at 
high temperatures—igneous and metamorphic rocks—
are commonly referred to as crystalline rocks.

FIGURE 1–5   Horizontal bedding of 
sedimentary rocks in the Grand 
Canyon. The Kaibab Formation, 
preserved at the top of this sequence 
of rocks, forms the Kaibab Plateau 
and marks the horizon. (Martin M303/
Shutterstock.)

FIGURE 1–6  Metamorphic rock. The rock shown here is a 
coarse-grained type known as gneiss. While very hot and under 
great pressure deep within Earth, it was twisted like tafy. The 
dark bands in the foreground are several centimeters wide. (John 
Luczaj, University of Wisconsin–Green Bay.)
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Figure 1-7 summarizes the various possible relation-
ships among igneous rocks, metamorphic rocks, and sedi-
mentary rocks that are composed of debris from other 
rocks. Any body of rock can be transformed into another 
body of rock belonging to the same group (metamorphic, 
igneous, or sedimentary) or to either of the other two 
groups. In other words, any kind of rock can be meta-
morphosed, melted to produce magma, or weathered to 
produce sediment.

Bodies of rock are classifed into formal units
Geologists also classify rocks into units called forma-
tions. Each formation consists of a discrete body of rock 
of a particular type that formed in a particular way—for 
example, a body of granite, of sandstone, or of alternating 
layers of sandstone and shale. Formations are represent-
ed by distinctive colors and patterns on geologic maps 
that depict their occurrence within particular geographic 

regions. A formation is formally named, usually for a geo-
graphic feature such as a town or river where it is well 
exposed.

The Kaibab Limestone is a typical formation. It forms 
the rim of a large portion of the Grand Canyon, and its 
upper surface forms much of the surface of the Kaibab 
Plateau, which borders the canyon and gives the forma-
tion its name (see Figure 1-5). The Kaibab Limestone is 
composed of fragments of shells and other skeletal de-
bris. These and other distinctive features of the forma-
tion, including its color and the characteristic thickness 
of the beds within it, permit geologists to recognize the 
Kaibab wherever it occurs. Other limestones that occur 
below the Kaibab in the Grand Canyon region display dif-
ferent features.

Smaller rock units called members are recognized 
within some formations. Similarly, some formations are 
united to form larger units termed groups, and some 
groups, in turn, are combined into supergroups.

Igneous rock

Metamorphic rock

Sediment transport

Sedimentary rock

Weathering
and erosion

Deposition 
and lithification

Weathering
and erosion

Burial, heating
and metamorphism

Melting and magma
migration

Burial, heating
and metamorphism

Weathering
and erosion

FIGURE 1–7  Transformations of one kind of rock into another 
kind of rock. Any of the three basic kinds of rock—igneous, 
sedimentary, or metamorphic—can be transformed into another 
rock of the same kind or either of the other two kinds through a 

variety of geologic processes. (Clockwise from top: Christian Février/
naturepl.com/Nature Picture Library; age fotostock/SuperStock; Les 
Palenik/Shutterstock; Doug Meek/Shutterstock.)
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Steno’s three principles concern sedimentary rocks
Because they form at Earth’s surface, sedimentary rocks 
provide most of our information about the history of life 
and environments on Earth. It is therefore important that 
we understand their distribution and their age relation-
ships. The study of stratifed rocks and their relationships 
in time and space is known as stratigraphy.

In the seventeenth century, Nicolaus Steno, a Danish 
physician who lived in Florence, Italy, formulated three 
sensible axioms for interpreting stratifed rocks. Steno’s 
frst principle, the principle of superposition, states that 
in an undisturbed sequence of strata, the oldest strata lie 
at the bottom and successively higher strata are progres-
sively younger (Figure 1-8A). In other words, in an un-
interrupted sequence of strata, each bed is younger than 
the one below it and older than the one above it. This 
is a simple consequence of the law of gravity, of course, 
as is Steno’s second principle, the principle of original 
horizontality.

The principle of original horizontality states that all 
strata are horizontal when they form. As it turns out, this 
principle requires some modifcation. We now recognize 
that some sediments, such as those of a sand dune, accu-
mulate on sloping surfaces, forming strata that lie parallel 
to the surface on which they were deposited. Sediments 
seldom accumulate at an angle greater than 45° to the 
horizontal, however, because they slide down slopes that 
are steeper than that. Therefore, a reasonable restatement 
of Steno’s second principle would be that almost all strata 
are initially more nearly horizontal than vertical. Thus we 
can conclude that any strongly sloping or folded stratum 
was tilted by external forces after it formed (Figure 1-8B).

Steno invoked his third principle, the principle of 
original lateral continuity, to explain the occurrence 
on opposite sides of a valley (or some other intervening 
feature of the landscape) of similar rocks that seem once 
to have been connected. Steno was, in effect, pointing out 
that strata are originally unbroken fat expanses, thinning 
laterally to a thickness of zero or abutting the walls of the 
natural basin in which they formed. The original continu-
ity of a stratum can be broken by erosion, as when a river 
cuts downward to form a valley (Figure 1-8C).

The rock cycle relates all kinds of rocks  
to one another
After rocks form, they are subject to many kinds of 
change. Central to the uniformitarian view of Earth is 
the rock cycle: the endless pathway along which rocks of 
various kinds are changed into rocks of other kinds.

Three simple principles are useful for recogniz-
ing steps of the rock cycle. The principle of intrusive 
relationships states that intrusive igneous rock is al-
ways younger than the rock that it invades (referred to 
as country rock). The principle of inclusions states that 
when fragments of one body of rock are found within a 
second body of rock, the second body is always younger 
than the frst. The second body may be a body of sedi-
mentary rock in which the fragments have come from 
another body of rock (e.g., pebbles), or it may be a body 
of igneous rock that contains distinctive pieces of older 
country rock that magma engulfed before it cooled (see 
Figure 1-3A). Inclusions of country rock surrounded by 
igneous rock are called xenoliths. The principle of cross-
cutting relationships states that any structure, such as 
a fault, that cuts through a sequence of preexisting rocks 
must be younger than the host rocks (see Figure 1-3B).

The rock cycle is actually a complex of many kinds 
of cycles in which components of any body of rock—
whether igneous, sedimentary, or metamorphic—can 
become part of another body of rock of the same kind or 
either of the other two kinds. In other words, as partly 
illustrated by Figure 1-7, any rock may be (1) melted 
to form magma that later cools to form igneous rock,  

Time 2Time 1

A

B

C

FIGURE 1–8  Steno’s three principles. A. The principle of 
superposition: at time 2, sediment builds up on top of 
other sediment that was deposited earlier, at time 1. B. The 
principle of original horizontality: by time 2, strata that were 
horizontal at time 1, shortly after being deposited, have been 
uplifted and tilted. C. The principle of original continuity: 
by time 2, strata that were continuous at time 1 have been 
divided into two bodies of strata by a river that has cut 
through them.
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